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POLYNOMIALS WITH SMALL MAHLER MEASURE 

MICHAEL J. MOSSINGHOFF 

ABSTRACT. We describe several searches for polynomials with integer coef- 
ficients and small Mahler measure. We describe the algorithm used to test 
Mahler measures. We determine all polynomials with degree at most 24 and 
Mahler measure less than 1.3, test all reciprocal and antireciprocal polynomi- 
als with height 1 and degree at most 40, and check certain sparse polynomials 
with height 1 and degree as large as 181. We find a new limit point of Mahler 
measures near 1.309, four new Salem numbers less than 1.3, and many new 
polynomials with small Mahler measure. None has measure smaller than that 
of Lehmer's degree 10 polynomial. 

1. INTRODUCTION 

The Mahler measure of a polynomial 
d d 

f (x) = akxk = ad J7(x - ak) 

k=O k=1 

is 

d 

M(f) = lad 171 max{1, IjakI} = exp (/ log If(e(t))I dt) 
k~=1\O 

where e(t) = e2Xt. The Mahler measure is clearly multiplicative, and satisfies 

M(f(x)) = M(f(-X)) = M(f(Xk)) = M(f*(X)) 

for every k > 1, where f*(x) = xdf(I/X). We restrict our attention to polynomials 
with integer coefficients. Thus M(f) > 1, and a classical theorem of Kronecker 
implies that M(f) = 1 if and only if f (x) is a product of cyclotomic polynomials and 
the monomial x. In [9], D. H. Lehmer asks if there exist polynomials with Mahler 
measure between 1 and 1 + c for arbitrary 6 > 0, and notes that the polynomial 

(X) = x + X9-X7 x6 -x5 -x4 -x3 + x + 1 

has M(f) = 1.1762808 .... Several extensive searches [4, 6, 11, 12] have failed to 
find a polynomial with smaller measure. 

The best general lower bound on M(f) (up to the constant c) is due to Do- 
browolski [7]: if f is a noncyclotomic, irreducible polynomial of degree d > 2, then 

M(fa 1 4 rlog log 'd 3 
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A polynomial f is reciprocal if f = f* and antireciprocal if f = -f*. Smyth 
[13] proves that if f is a nonreciprocal, irreducible polynomial and f(x) x - 1 
or x, then M(f) > 1.324717... , the real root of x3 - x - 1 and the smallest 
Pisot-Vijayaraghavan number. 

The height and length of f are defined respectively by 

d 

H(f) = ma<d lakl, L(f) = lakl- 
k=O 

Let 4?, (x) denote the nth cyclotomic polynomial. We say a polynomial f is primi- 
tive if f(x) cannot be written as g(xk) with k > 1 for some polynomial g. 

This article describes some recent extensive searches for polynomials with small 
Mahler measure: an exhaustive search through degree 24, a search of reciprocal 
and antireciprocal polynomials with height 1 through degree 40, and a search of 
certain sparse polynomials up to degree 181. Section 2 describes the algorithm 
used to detect polynomials with small measure. Section 3 describes each search and 
summarizes the polynomials found by each. Section 4 notes a new limit point of 
Mahler measures near 1.309 and lists four new Salem numbers less than 1.3. Three 
tables in the Supplement summarize the polynomials found by these searches. 

2. THE POLYNOMIAL PROCESSOR 

We describe an algorithm for testing whether a given polynomial has Mahler 
measure less than a prescribed bound. This algorithm is based on that used in [4] 
and uses the root-squaring procedure of Graeffe to detect polynomials with large 
Mahler measure quickly. We review the Graeffe algorithm. Given a polynomial f, 
let g and h be polynomials so that 

f(x) = g(x2) + xh(x2) 

and define 

fi(x) = g(x) - xh(x) 2. 

Then the roots of fi are precisely the squares of the roots of f, and M(fi) = M(f)2. 
Let fm denote the polynomial obtained from f by iterating the Graeffe procedure 
m times. 

We note the following properties of the Graeffe algorithm. 

Lemma 2.1. If f (x) = g(x2) + xh(x2) and L(g)2 + L(h)2 < Y, then fi can be 
computed exactly using integers no larger than Y in absolute value. 

Proof. Immediate from the fact that L(fi) < L(g)2 + L(h)2. 0 

Lemma 2.2. If f(x) is a polynomial, then fi(1) = f(1)f(-1). If f(x) is a recip- 
rocal polynomial of even degree, then fi (-1) is a perfect square. 

Proof. Let f(x) = g(x2) + xh(x2), then 
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For the second statement, suppose deg f = 2N and N is odd. Then 
LN/2J N 

g(-1) xE a2k(-l) + E a2k 
k 

k=O k=FN/21 

[N/2J [N/2J 

- E a2k(-1) + E a2N-2k(-1) 
k=O k=O 

since a2N-2k = a2k. Thus fi(-1) = h(-1)2. Similarly, if N is even, we find that 
fi(-I) = g(-1)2. 

Lemma 2.3. If f (x) is a product of cyclotomic polynomials and m> log2 deg(f), 
then fm (X) = fm+ (x). 

Proof. Suppose f(x) = 4)n(x) and n = 2rq with q odd. Then 

f (42r-mq(x))2 if m < r, 

l(4)q() if m > r. 

Thus fm(x) = fm+i(x) if m > r. Since log2 deg(f) > r - 1, the statement follows. 
D 

We describe the algorithm. Since reciprocal polynomials of odd degree are di- 
visible by x + 1, we assume the given polynomial has even degree. 

Algorithm 2.4. Test Mahler Measure. 

Input: f, a monic, reciprocal polynomial of even degree d having integer coeffi- 
cients, and M, a real number satisfying 1 < M < 1.4. 

Output: If 1 < M(f) < M, return M(f) and the noncyclotomic part of f. 
Step 1. Root-squaring. Let an,m denote the coefficient of xn in fm(X). If M(f) < 
M, we see from [4] that 

(2.1) lan,ml ? (< ) + (d -) 2 m2 + M-2m -2) 

for all m, and if in addition alim > d-4 and m > 1, then 

(2.2) lanml < () + (d -) (M2m + M-2m -2) 

+ M2(2m + M-2m- 2) ((d-j) + (d-4)) 

In [4], this latter inequality requires that fm have no negative real roots, but the 
proof requires only that any negative real roots have multiplicity greater than 1. 
This is assured by the condition m > 1. 

We perform the root-squaring procedure at most mO times, rejecting the poly- 
nomial if at any stage the appropriate inequality (2.1) or (2.2) is not satisfied. The 
parameter mO is selected to minimize the total computation time. If mo is too small, 
Step 1 passes too many polynomials with M(f) > M, invoking Steps 2 and 3 much 
more often. On the other hand, the an,m are computed using exact arithmetic, 
and in general an,m+1 has about twice as many digits as an,m. Thus, selecting mO 
too large greatly increases the time required in Step 1. We set mO = 10 in the 
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exhaustive search and the height 1 search, and mo = 12 in the sparse polynomial 
search. 

For small values of m, we store the an,m as double-precision, floating-point num- 
bers. This allows us to use the fast arithmetic of the hardware to compute several 
of the fm. Once the an,, require more than 53 bits of precision, we switch to a big 
integer representation implemented in software. Because the algorithm typically re- 
jects many polynomials after only a few iterations of the root-squaring procedure, 
this strategy saves a considerable amount of time. We determine when to switch to 
the big integer representation using the criterion of Lemma 2.1 with Y = 253 1. 

Let ml denote the number of root-squaring operations performed on f using 
the hardware's arithmetic. For m < ml, if fm(-l) = 0, we remove all factors of 
x + 1 from fm(x). Assume then that fm(-1) 7& 0 for m < ml. Set s = f(1) and 
to = f(-1), and for 1 < m < ml, let Sm = sm-ltm_- and tm = (fm(-1))1/2. By 
Lemma 2.2, a prime p divides fm(1) if and only if p divides sm. The integer sm, is 
used in Step 2. 

Finally, we reject f if we detect that fm = fm-i for some m. We assume that 
MO > 1 + log2 d, so by Lemma 2.3 we reject all products of cyclotomic polynomials. 

Step 2. Remove cyclotomic factors. The smallest Mahler measure among polyno- 
mials of degree at most 6 is M6 = M(x6 - x4 + x3-x2 + 1) 1.401268. Because f 
has a noncyclotomic factor and M < M6, we need only test f for cyclotomic factors 
of degree at most d -8. The following two observations speed this test. Both make 
use of fm, (x), the last polynomial computed using the hardware's arithmetic in 
Step 1. 

First, a cyclotomic factor 4>n(x) of f(x), where n = 2rq with q odd, stabilizes 
as a factor 4?q(X) with multiplicity 2r-1 of fm(x) when m > r. Thus, for each odd 
integer q with (p(q) < d -8, we test whether 4?q(x) divides fmi (x). If it does not, 
we conclude that 4)2rq(x) with r < ml does not divide f(x). 

Second, we avoid this trial division whenever 4)q(1) does not divide fmi (1). Since 

0 if n= 1, 

4'n(1) p if n = p', p a prime, 
I otherwise, 

it suffices to check if 4)q(1) divides smi* 

After the cyclotomic factors of f are removed, we check if f is among the known 
polynomials with M(f) < M. These polynomials are stored in a binary tree to 
facilitate this check. If f is new, we continue with Step 3. 

Step 3. Compute Mahler measure. We first compute an approximation to M(f) 
using Bairstow's method [14] for finding roots of polynomials. We implement this 
procedure using hardware arithmetic and exploit the fact that f is reciprocal, so 
this test is quite fast. If the estimated value of M(f) is less than M + 8, with 6 a 
specified positive tolerance, we pass f to a more accurate procedure for computing 
M(f). The software packages PARI and Maple are used to compute M(f) in this 
second stage. 

We omit the preliminary estimate of M(f) when testing polynomials of large 
degree in the sparse polynomial search. 
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3. SEARCHES 

Three sets of polynomials were tested with Algorithm 2.4: a set containing all 
polynomials of a given degree with measure less than M, reciprocal and antirecip- 
rocal polynomials with height 1, and polynomials with height 1 and a fixed number 
of nonzero coefficients. A fourth set of polynomials checked using Algorithm 2.4 is 
described in [11]. 

3.1. Exhaustive Search. In [4, p. 1369], Boyd describes a method for finding all 
reciprocal polynomials of a given even degree d with Mahler measure less than a 
given bound. In [4] and [6], Boyd uses this procedure to find all polynomials of 
degree d < 20 having Mahler measure less than 1.3. We use this same method to 
extend the exhaustive search through degree 24. We find 48 primitive, irreducible, 
noncyclotomic polynomials with Mahler measure less than 1.3 of degree 22 and 46 
such polynomials of degree 24. These are precisely the polynomials of degrees 22 
and 24 in [6] that were found in Boyd's height 1 search. 

Extending this search to degree 24 involved testing about 9.8 billion polynomials 
and required approximately 15 days of computer time on an Intel Pentium 120. 

3.2. Height 1 Search. Suppose f is an irreducible polynomial of degree d. Corol- 
lary 2 of [1] shows that for any positive integer L there exists a polynomial g such 
that degg < L and 

Llog H(fg) < (d + L - 1)log M(f) + 2log (d L) + 
3d 

Suppose M(f) < M < 2, and choose L so large that 

(3.1) (d + L -1) log M(f) + dogt d ) +3d <Llog2- 

Then there exists a polynomial g with degg < L and H(fg) = 1. We call such a g 
a mollifier of f. 

Note that (3.1) implies a mollifier of f exists with degree O(d log d/ log(2/M)), 
and we may compute an explicit bound on the degree in specific cases. For example, 
if there exists a polynomial of degree 26 with Mahler measure less than 1.1762808, 
then it is a factor of a polynomial with height 1 and degree at most 161. 

In [4], Boyd remarks that if f is a polynomial with small Mahler measure, a 
mollifier g of f seems to exist with M(g) = 1 and degree fairly small relative to the 
degree of f. He therefore proposes searching polynomials with height 1, and in [6] 
reports the results of testing reciprocal polynomials of even degree with height 1 
through degree 32. We extend this search by testing all reciprocal and antireciprocal 
polynomials with height 1 (the odd as well as the even degrees) through degree 40. 

Note that if f(x) is a reciprocal polynomial of odd degree, then f(x)/(x + 1) is a 
reciprocal polynomial of even degree, so we invoke Algorithm 2.4 on f(x)/(x + 1). 
Likewise, if f(x) is an antireciprocal polynomial of odd degree, we pass f(x)/(x -1) 
to Algorithm 2.4, and if f(x) is an antireciprocal polynomial of even degree, we test 
f WAX)/2 - 1). 

This search finds many new polynomials with Mahler measure less than 1.3, 
including a number of polynomials with degree at most 32 and height greater than 1. 
These polynomials are listed in Table 1. None have degree less than 30. 

The search tested approximately 5 billion polynomials and required about 5.5 
weeks of computation on a Pentium 120. 
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TABLE 1. Polynomials with height > 1 and d < 32 not in [6] (v is 
the number of roots outside the unit disk) 

d Measure v Half of coefficients 
30 1.285530553671 4 1 0 1 1 1 1 1 2 0 1 1 0 0 0 0-1 
30 1.288113357594 2 1 1. 2 1 1-1-1-2-1-1 0 0 1 0 0-1 
30 1.292745216074 4 1 0 1 0 1 1 0 2 0 2 0 1 1 0 2-1 
30 1.295830812559 3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 
30 1.296432383243 6 1 0 1 1 1 2 1 3 2 3 3 3 4 3 4 3 
30 1.296533365392 3 1 1 1 0 0-1-1-1 0 0 1 0 0-1-1-2 
30 1.296872723796 3 1 0-1 0-1 1 1 0 0-2 0 1 1 1-1-1 
30 1.297599482921 3 1 1 0-1-2-2-1 0 1 2 2 1 0-1-1-1 
30 1.299672830907 3 1 0-1 1 0-1 1 0-2 1 1-1 0 0 0 1 

32 1.236083368052 4 1 1 1 1 0-1-1-2-1 0 0 1 1 0 0 0-1 
32 1.249688298465 4 1 2 2 1 0-1-1-1 0 1 2 2 2 1 0-1-1 
32 1.268321917905 2 1 1 1 1 0 0 0 0 1 1 1 1 0-1-2-3-3 
32 1.268867282818 4 1 1 1 1 0-1-2-2-2-2-1-1 0 1 2 3 3 
32 1.270932746058 4 1 1 1 0 0-1-1-1 0 1 2 2 2 1 0-1-1 
32 1.279387162064 2 1 2 2 2 1-1-2-3-3-2-1 0 1 1 1 1 1 
32 1.286650909902 6 1 0-1 1 0-2 1 1-2 1 2-2 0 2-2-1 3 
32 1.287530573906 3 1 1 0-1-1-1-1 0 1 1 0-1-1-1 0 1 2 
32 1.289386554481 4 1 1 1 0-1-2-1 1 2 2 0-2-3-2 0 2 3 
32 1.291024122419 4 1 1 1 0-1-1-1-1-1 0 1 2 1 0-1-1-1 
32 1.294553682172 4 1- 1 0-1-1-1 0 1 2 2 0-2-3-2 0 2 3 
32 1.294774730521 4 1 1-1-2 0 2 1-1-1 0 0 0 1 1 0-1-1 
32 1.298256684864 2 1 2 3 4 4 3 2 1 0-1-2-3-3-3-3-3-3 
32 1.298335890166 6 1 1 1 1 0-1-1-1-1-1-1-1-1 0 1 2 3 
32 1.299312144051 4 1 1 0 0 1 1 1 1 1 1 2 2 1 1 2 2 1 

3.3. Sparse Polynomial Search. The Mahler measure of a polynomial f(x, y) 
in two variables is defined by 

(3.2) M(f(x,y)) =exp (jj log f(e(s),e(t))l dsdt) 

Boyd [5] proves that the Mahler measure of a polynomial in two variables is the 
limit of the Mahler measures of certain associated polynomials in one variable: 

M(f(x, y)) = lim M(f(x, xT)). 
n--oo 

The smallest known limit points of Mahler measures arise from two-variable poly- 
nomials with height 1 having at most six terms: 

M(x2(y2 -1) + x(y3 -1) + y(y2 _ 1)) = 1.255433... 

M(x2 + x(y2 + y + 1) + y2) = 1.285734... 

M(x2(y3 -1) + x(y5 -1) + y2(y3 _ 1)) 1.315692... 

M(x(y3 -y-1) _ (y3 + y2 + 1)) =1.324717.... 

This suggests testing the Mahler measure of sparse polynomials with height 1. 
We use Algorithm 2.4 to test all reciprocal and antireciprocal polynomials with a 
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fixed number n of ?1 coefficients up to some maximal degree. The following table 
shows the maximum degree d tested for each n > 5 (reciprocal and antireciprocal 
polynomials with n < 4 have Mahler measure 1 or (1 + 5)72). 

n d 
5, 6, 7 181 
8, 9 131 
1U, 11 101 
12, 13 75 
14, 15 55 
16, 17 47 
18, 19 43 

About 800 million polynomials were tested, requiring about three months of 
computation on Pentium and DEC Alpha computers. 

This search found every previously known polynomial with Mahler measure 
less than 1.3, including all the polynomials found in the two previously described 
searches, as well as those found in [11]. It also found several polynomials with 
measure less than 1.3 that are not obviously associated with any of the known limit 
points of measures (including the new limit point described in the next section). 
The largest degree among these sporadic polynomials is 106; the smallest measure 
is about 1.239861, the 64th smallest Mahler measure greater than 1 known. (This 
polynomial appears in the list of smallest known Mahler measures in the Supple- 
ment.) 

All but three of the polynomials with Mahler measure less than 1.3 were found 
in searches with n < 12. Using lattice reduction to search for sparse reciprocal or 
antireciprocal multiples of these three exceptional polynomials, we find that one is 
a factor of the polynomial 

X78 X76 + 72 _ X55 _ x50 _ X43 + X35 + x28 + x23 _ x6+ 2 

with n = 12. All the auxiliary factors of this polynomial are cyclotomic. The best 
cyclotomic multiples that were found of the other two have n = 14 and n = 13: 

X45 X42 + X X34 _ x32 + x31 _ 24 + 21 _X14 + X13 + x11- 9+ 3 

48 + 46 + X44 X41 _32 _31 + x24 X17 _16 X7 + X4 + X + 

We find that the noncyclotomic part of the latter polynomial divides 
x56 + x51 _ x50 + 47 X39 _ x28 _ X17 +9 -X6 +X 5+ 

with n = 11, but one of the auxiliary factors is not cyclotomic (it is ?(-x)). We 
note that the method of [8] could be used to determine if other sparse multiples of 
these polynomials exist. 

4. RESULTS 

4.1. A New Limit Point. Many of the polynomials produced by these searches 
have the form 

(X3n-1 + 1)(xn+l + 1) + x2n-1(X2 -x + 1). 

Replacing xn with y and multiplying by x yields 

f(x,I ) = x2y(y + 1) + x(y4 _ y2 + 1) + y2(y +1) 
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Let x = ao(t) and x = :(t) be the two roots of f (x, e(t)) for any t, taking 

~(t) 1 - 2cos(47rt) + y(1 - 2cos(47rt))2- 16cos2(7rt) 
a(t) ~~~4 cos(wrt) e(t/2). 

Since Ia (t)l = 1/L3(t)I and Ia (t)l = ao(I-t) , we have by (3.2) and Jensen's 
formula 

P1/2 

log M(g) = 2 J log Iot(t) I I dt. 

Now Ia!(t)l 1 on [O,t1] and [1/3,t2], where t, = .23454... and t2 = .45028... 
satisfy (1 - 2 cos(47rt))2 = 16 cos2(7rt). Computing the integral over the remaining 
intervals yields M(f) = 1.309098380652328.... 

4.2. Small Salem Numbers. Table 2 lists four new Salem numbers less than 1.3. 
Each is listed with its minimal polynomial and its rank among the 47 known Salem 
numbers less than 1.3. The other 43 known small Salem numbers can be found in 

[2] and [3]. 

TABLE 2. New small Salem numbers 

Rank Salem number Minimal polynomial 

39 1.292418657582 x40 + X37 + X35 + X33 + X31 + X29 + X26 + X24 + X22 + 
x20 +x18 +x16 +X14 +X11 +X9 +X7 +X5 +X3 + 1 

40 1.292900721780 x46 -X42 + X41 _ X40 + X39 X25 + X24 _ X23 + X22 _ 
X21 +x7-x6 +x5 -x4+ 1 

43 1.296210659593 x34 + X33 + x31 X29 - X27 - 2X26 X23 + X22 + X2l - 

X20 + x19 + x18 x17 + x16 + X15-X14 + X13 + x12 - 

X- - 2x8 _ X7-X5 + x3 + X + 1 

46 1.298429835475 x36 + x35 -x33-2X32 - 2X31 - X30 + X28 + X27 _ X25 _ 
X24 + X22 + x21 - x19 -x8 - x17 + X15 + X14-X12- 

x11 + x9 + x8 - X6 - 2X5-2X4-X3 + X +1 

4.3. Records and Summaries. Three tables in the Supplement at the end of 
this issue summarize the results of the searches. The first lists the 64 smallest 
known Mahler measures greater than 1, together with half of their coefficients and 
the number of roots v of each that lie outside the unit disk. These are all the 
known Mahler measures greater than 1 and less than 1.24. The second shows the 
primitive, irreducible, noncyclotomic polynomial with the smallest known Mahler 
measure of a given even degree d, for 8 < d < 100. The third summarizes the 
primitive, irreducible polynomials with measure less than 1.3 found in the searches, 
classifying them by degree and the number of roots outside the unit disk. 

More extensive summaries and lists of all the polynomials found with measure 
less than 1.3 can be found at the author's World Wide Web site, accessible from 
the number theory web. 
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